Transformation pathways in high-pressure solid nitrogen: from molecular N2 to polymeric cg-N.

نویسندگان

  • Dušan Plašienka
  • Roman Martoňák
چکیده

The transformation pathway in high-pressure solid nitrogen from N2 molecular state to polymeric cg-N phase was investigated by means of ab initio molecular dynamics and metadynamics simulations. In our study, we observed a transformation mechanism starting from molecular Immm phase that initiated with formation of trans-cis chains. These chains further connected within layers and formed a chain-planar state, which we describe as a mixture of two crystalline structures--trans-cis chain phase and planar phase, both with Pnma symmetry. This mixed state appeared in molecular dynamics performed at 120 GPa and 1500 K and in the metadynamics run at 110 GPa and 1500 K, where the chains continued to reorganize further and eventually formed cg-N. During separate simulations, we also found two new phases--molecular P2(1)/c and two-three-coordinated chain-like Cm. The transformation mechanism heading towards cg-N can be characterized as a progressive polymerization process passing through several intermediate states of variously connected trans-cis chains. In the final stage of the transformation chains in the layered form rearrange collectively and develop new intraplanar as well as interplanar bonds leading to the geometry of cg-N. Chains with alternating trans and cis conformation were found to be the key entity--structural pattern governing the dynamics of the simulated molecular-polymeric transformation in compressed nitrogen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calculations predict a stable molecular crystal of N<sub>8</sub>

Nitrogen, one of the most abundant elements in nature, forms the highly stable N2 molecule in its elemental state. In contrast, polynitrogen compounds comprising only nitrogen atoms are rare, and no molecular crystal made of these compounds has been prepared. Here, we predict the existence of such a molecular solid, consisting of N8 molecules, that is metastable even at ambient pressure. In the...

متن کامل

Cagelike diamondoid nitrogen at high pressures.

Under high pressure, triply bonded molecular nitrogen dissociates into singly bonded polymeric nitrogen, a potential high-energy-density material. The discovery of stable high-pressure forms of polymeric nitrogen is of great interest. We report the striking stabilization of cagelike diamondoid nitrogen at high pressures predicted by first-principles structural searches. The diamondoid structure...

متن کامل

Emergence of Novel Polynitrogen Molecule-like Species, Covalent Chains, and Layers in Magnesium−Nitrogen MgxNy Phases under High Pressure

Stable structures and stoichiometries of binary Mg−N compounds are explored at pressures from ambient up to 300 GPa using ab initio evolutionary simulations. In addition to Mg3N2, we identified five nitrogen-rich compositions (MgN4, MgN3, MgN2, Mg2N3, and Mg5N7) and three magnesium-rich ones (Mg5N3, Mg4N3 and Mg5N4), which have stability fields on the phase diagram. These compounds have peculia...

متن کامل

Techno-economic evaluation of helium recovery from natural gas; A comparison between inorganic and polymeric membrane technology

Natural gas produced at high pressure (50-70 bar) is the only industrial source of helium (He). A membrane separation process may offer a more efficient production system with smaller footprint and lower operational cost than conventional cryogenic system. Inorganic membranes with high mechanical strength are known to exhibit good stability at high pressure. In this work, two inorganic membrane...

متن کامل

Exotic stable cesium polynitrides at high pressure

New polynitrides containing metastable forms of nitrogen are actively investigated as potential high-energy-density materials. Using a structure search method based on the CALYPSO methodology, we investigated the stable stoichiometries and structures of cesium polynitrides at high pressures. Along with the CsN3, we identified five new stoichiometric compounds (Cs3N, Cs2N, CsN, CsN2, and CsN5) w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 142 9  شماره 

صفحات  -

تاریخ انتشار 2015